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Fig. 1: The novel color-encoded smiley-timeline we test as an alternative to representing PRO scores via traditional line charts. The
smiley-timeline encodes both symptoms (nonoptimal) and function (optimal) using color and pictographs to avoid visual-semantic
conflicts incurred in the position encoding of line charts.

Abstract—Effective visualizations often employ directional paradigms to indicate improvement in alignment with viewers’ notions of
optimality (e.g., y-axis numbers increase with higher positions). Occasionally, however, viewers’ visual and semantic paradigms of
improvement conflict, leading to confusion. Such is the case with visualizations of the National Institutes of Health’s Patient-Reported
Outcomes Measurement Information System (PROMIS), which consists of two types of Patient-Reported Outcome (PRO) scores,
one ranging from 0 ("within normal limits") to 100 ("severe") for symptoms, and one ranging from 0 ("severe") to 100 ("within normal
limits") for function. Current longitudinal visualizations of these scores rely on positional or numeric encoding to communicate changes
in patient status. Semantically upwards directions are often associated with positive trends and more ideal situations (e.g., "I’m
on the up-and-up", "feeling 100"), while visually, upwards directions typically indicate more of something (e.g., stock price charts).
When a line representing pain rises, it can be interpreted as pain getting worse or as pain being rectified. We design and test
alternative visualizations to address the issue of directional incongruence and improve visualization efficacy. We do so via a case
study of longitudinal PROMIS score interpretation, and present a novel "smiley"-timeline visualization that encodes scores via color
and pictographs instead of position. We find that 1) color-encoded line charts that encode “up” as improvement over all variables
and smiley-timelines result in the quickest response times, 2) visualizations with color encoding result in faster response times than
their grayscale counterparts, and 3) smiley-timelines rank significantly higher than tested line charts in ease of use, intuitiveness,
and likelihood of recommending them. Our findings support the rejection of strict adherence to the precision encoding hierarchy in
circumstances in which visual and semantic directionality conflict. Finally, we present examples of other situations in which this conflict
is present, providing the basis for future work where additional redesigns and evaluation are warranted. A free copy of this paper and
all supplemental materials are available at https://osf.io/kxzm3/.
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1 INTRODUCTION

Spatial-numeric associations are internalized by children who are in-
fluenced f rom the written direction of the language they speak and 
their experience in the physical world [50, 51]. These conventions 
strongly influence the interpretation of visualizations and thus inform 
many fundamental practices of data visualization (e.g., small-to-large 
x-axis units are plotted left-to-right) [28, 37, 50, 54]. While many vi-
sualizations succeed in using direction to make information readily 
accessible, it is possible for visual and semantic directional conventions 
to conflict [57], leading to confusion, frustration, and more seriously, 
miscommunication of crucial data [19, 43, 44].

This problem is acutely present in the communication of personal
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Fig. 2: With no other information, how has this patient been progressing?
At first glance it may appear that the patient’s pain has increased, but the
chart on the right depicts a patient whose pain has lessened over time.

health measures to patients. Health care in the United States has a
long history of suffering from opaque and inaccessible personal health
communication [23]. At the start of the 21st century, in a serious
attempt to improve clinical management, health outcomes, and patient
engagement, the National Institutes of Health (NIH) began a decade-
long initiative to overhaul the systems in which clinical outcomes
are documented and communicated to and between clinicians and
patients [8, 20]. To do so, the NIH developed and tested the Patient-
Reported Outcomes Measurement Information System (PROMIS) [20].
This system still suffers from miscommunication of collected data
[19,43,44], and multiple surveys on Patient Reported Outcomes (PROs)
find their use in care will remain limited if score data are difficult to
interpret and integrate into decision making [16, 27].

A typical longitudinal visualization of PROMIS data is a line chart
presenting time along the x-axis and scores along the y-axis [17–19,35,
43–45, 48]. This design leads to well-documented confusion stemming
from disagreement between semantic and visual cues [18, 19, 35, 44, 45,
48]. Figure 2 shows twin upwardly prone lines representing mobility
and pain for a hypothetical patient, yet it is not clear how the patient
is progressing. While upwardly trending lines are typically associated
with improvement, suggesting both mobility and pain are “getting
better,” English semantics dictate that “more” pain corresponds to a
worsening condition. Numbering along the y-axis is also unhelpful;
typical associations with number scales encounter the same semantic-
directional conflict (e.g., "I don’t know whether 100 is severe or 0 is
severe") [19].

This paper seeks to address positional-semantic conflicts, using non-
experts interpreting longitudinal trends in PROMIS score visualizations
as a case study. First, via a series of qualitative pilot interviews, we
provide a deep-dive into the reasoning behind the confusion that occurs
when visualizations present positional and semantic incongruences.
The results of this qualitative work are supported by numerous stud-
ies on the efficacy on PRO score visualizations. Next, we attempt to
limit the possibility of this ineffectual reasoning through an alternate
novel ’smiley’-timeline visualization (Fig. 1), in which we replace all
instances of conflicting positional encoding with color and pictographic
encoding which align with semantic directional conventions. Finally,
we test the interpretability of longitudinal trends, a key task in com-
municating patients’ overall health trajectory. We test our proposed
smiley-timeline and four formats of line charts that are commonly
used to communicate PROs to patients via electronic health record
(EHR) systems. We also conduct a subjective evaluation of these five
visualizations, gauging non-experts’ preferences for their use.

Patient-Reported Outcomes are a model example of positional-
semantic conflict’s impact on accurate communication of critical in-
formation, though this same conflict can be found throughout other
visualization types and applications. We finish this paper by zoom-
ing out, and presenting a broader view of other instances of common
miscommunication, in which positional-semantic conflicts stand to be
addressed in the future.

2 BACKGROUND & SIGNIFICANCE

2.1 Visual-Semantic Incongruence in Line Charts
Classically accepted paradigms in visualization define a hierarchy
of visual encoding based on precision, placing the depicting of in-

formation via position as the strongest of all possible visual chan-
nels [14, 36, 42, 59]. Thus it is logical to hypothesize that line and bar
chart visualizations may communicate informations, including PRO
scores, more effectively than heat maps and pictograms. Yet, this hi-
erarchy of visualization encodings is based on visual channels’ ability
to convey precision [36]. Position encoding dominates in experiments
that evaluate the precision of estimating a value, a difference between
values, or an aggregate measure (e.g., average value) [29, 42, 59]. But
highly accurate numeric interpretation is not always a visualization’s
primary objective [15]. For PRO scores in particular, visualizations
must be intuitive and easy to understand so that readers with varying
graph literacy are able to understand key concepts in their depicted data.
Thus, we assert that the accuracy of interpreted amount of change (e.g.
“pain score changed by 2” vs “pain score changed by “10”) is secondary
to the accuracy of communicated direction of change (e.g. “pain score
went down” vs “pain score went up”). Additionally, position encoding
does not reliantly maximize reported intuitiveness and ease of use [15],
which are integral to engaging patients and communicating PROs [52].

In visualization research, semantic-directional incongruence in line
charts has only been lightly investigated. A 2022 analysis of line charts
representing "negative-valence" (i.e., non-ideal) variables found that
non-inverted graphs lead to higher performance than their inverted
counterparts regardless of semantic convention [57].

2.2 Patient-Reported Outcomes

Since its development almost two decades ago, the NIH’s PRO system,
PROMIS, has accrued hundreds of studies that suggest that document-
ing and referring to its patient-reported scores has significant positive
effects on the clinical care and outcomes of patients that receive care
throughout a wide range of medical fields, including oncology and
arthritis [24, 25, 38]. With PROMIS becoming adopted in a range
of clinical practices throughout the United States, Electronic Health
Record (EHR) providers are integrating PROMIS score collection, anal-
ysis, and communication tools into their host of products [5, 10, 52, 58].
Beyond the US, other forms of PRO systems, like Australia’s PROMs
and the European Organisation for Research and Treatment of Cancer’s
Quality of Life (QoL) Questionnaires, are also advancing in popular-
ity and in turn being recommended for integration into clinician- and
patient-facing software [4, 9]. Even as EHR services increase access to
PRO data via new dashboards and reporting features, lack of intuitive
visualization techniques can lead to misinterpretation and restrict PRO
data from being fully understandable [16].

PROMIS measures can quantify patient symptoms (e.g., fatigue) or
function (e.g., mobility) and range from 0 to 100, using a normed T-
score metric whereby “50 is the mean of a relevant reference population
and 10 is the standard deviation” [6]. Cut-points for PROMIS measures
vary in placement, number, and labeling (e.g., “within normal limits,
mild, moderate, severe” and “excellent, good, fair, poor”) [7]. PROMIS
numeric scoring is directly correlated to the amount of measure in
question. A high score can indicate either a negative health outcome
(e.g., worsening symptom) or a positive one (e.g., improving function)
[7]. Understanding the evolution of patients’ scores over time is useful
when managing health conditions [11].

2.3 Patient-Reported Outcome Visualizations

Past research maintains that line charts are a popular visualization
among both patients and clinicians to communicate PRO scores over
time [18, 19, 44, 45]. Line charts receive high scores of “usefulness”
and “ease-of-understanding” and result in fairly accurate interpretation
of function scores (e.g., mobility) [18, 19], despite leading to markedly
lower accuracy when interpreting symptom scores (e.g., pain) [19].
Qualitative investigations indicate line charts’ most confusing attribute
is directional inconsistency inherent in positional and numeric encod-
ing [19, 44]. Several studies have investigated varying direction of
health improvement in line charts [17, 45, 48], some of which suggest
that interpretation accuracy increases when line charts encode higher
positions as improvement in symptoms and function (e.g., Figure 2)
(n=1113, n=1017) [45, 48].
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To combat directional confusion and reduce demand on readers’
working memory, the PRO Data Presentation Stakeholder Advisory
Board developed guidelines that recommend visualizing electronic
PRO scores using simple graphs with clear annotations, symbols to
differentiate information, and color encoding to depict severity [1, 44],
which is often facilitated via a traffic light red-yellow-green color
scheme [1, 12, 49]. Such coloring leverages the familiarity bias of
U.S. readers who are accustomed to red indicating danger and green
indicating a lack thereof, but must be paired with redundant encodings
via other mapping strategies (e.g., position, shape, text) to maintain
accessibility for readers with color-vision deficiency [53]. We explore
effects of color on trend interpretation accuracy in this paper. Prior
research similarly explores visualizations that color-encode PRO sever-
ity [43, 45], although we are unaware of research that has examined
similar graphs with and without color, as we present here.

A sparse amount of research has examined the effect of pictographs,
sometimes referred to as “visual analogies”, on PRO score comprehen-
sion. One study found pictographs led to worse PRO comprehension
in comparison to line charts, but cautioned their results [31]. Another,
found that pictographs based on the Wong-Baker FACES Pain Rating
Scale overlaid onto bar charts resulted in better comprehension and
was participants’ preferred format for displaying longitudinal symptom
data [46, 56]. A third study, determined that pictographs and color-
encoded number lines resulted in more comprehension than line charts
and simple text-based descriptions, but only examined data from two
different points in time, failing to address how comprehension adjusted
with multi-point longitudinal data [49]. Within general visualization
research, pictographs have been shown to be more comprehensible than
bar charts by readers with low literacy [34].

While research suggests that using line charts to depict symptom
scores (e.g. pain) result in reader confusion [19], current guidelines,
published as recently as 2021, still recommend the use of line charts
to communicate such information [2, 12, 13]. Other recommended
visualizations for longitudinal representation of PRO scores (including
grouped bar charts, bubble/point plots, and tables) rely on the same nu-
merical and positional encoding that triggers misunderstanding of line
chart data [2, 12]. Heat maps are the sole recommended visualization
that represent score changes via a non-positional and non-numerical
encoding [2]. Still, heat maps are often tested and presented in guide-
lines with positional double encoding that couples a color scale to an
x- or y-axis [2, 19]. For an overview of prior research on PRO score
visualizations see Table 1.

To address the gap in research surrounding the interaction and effect
of color-encoding and inverting y-axes of PRO score line charts, we
developed four line chart stimuli. We also sought to explore the effect
of removing y-axes encoding in multi-point (>2) longitudinal PRO
score visualizations, by creating a color-encoded smiley-timeline visu-
alization that is novel in this application. Figure 3 shows an overview of
tested chart types. Below, we evaluate the efficacy and user preference
of these 5 PRO score visualizations, specifically their effect on user
comprehension of longitudinal trends.

3 MATERIALS & METHODS

We present a between-subjects study in which we develop a color-
encoded smiley-timeline and test its effect on trend interpretation in
comparison to four line charts typically used to depict PRO scores.

3.1 Visualization stimuli design
Informed by current literature, we hypothesize that removing posi-
tional encoding from PROMIS score visualizations will resolve readers’
visual-semantic confusion around y-axis directionality. Our novel vi-
sualization has no y-axis, instead encoding PROMIS scores along a
timeline via color and pictographs (Figure 3, bottom).

We use smiley-face pictographs due to their intuitive communication
of positive/negative outcomes and their prevalence in clinical prac-
tice [55, 56]. To adhere as closely as possible to PROMIS’s framework
of continuous numeric scores (0-100) with discrete binned thresholds
(“normal” to “severe”), we design these smiley-timelines to have contin-
uous encoding using a color gradient and discrete encoding using three

mouth shapes. This design is also an approximation of the continuous
positional and discrete color encoding of the line charts we test (Fig. 3,
left column), allowing for a more valid comparison between the three
conditions.

We design tested line charts to approximate typical PRO score visu-
alizations and investigate if color and/or y-axis directionality changes
general trend interpretation. The optimal direction of the y-axis for
PRO visualizations of symptom scores is up for debate. Some research
suggests directionality that adheres with common graphical paradigms
(i.e. “down” corresponding to less pain) is more intuitive [54, 57].
Conflicting research on PRO score visualizations suggests the opposite
is true (i.e., "down" corresponding to less optimal results like more
pain) [45, 48]. Thus, we vary the direction of the y-axis on line charts
that show a symptom–as done in [17, 45, 48]–and interspersed them
with line charts that depict a function. To explore the effects of encod-
ing symptom improvement in a non-positional manner, we compared
smiley-timelines’ performance to that of the four line charts: those
with differing directions of improvement for symptoms and function
and color (line-diff-c, top left), those with the same direction of im-
provement for symptoms and function and color (line-same-c, middle
left), and their black-and-white equivalents (line-diff-bw, top right;
line-same-bw, middle right).

We created all tested visualizations using Adobe Illustrator. Table 2
provides a summary of labeling conventions.

3.2 Pilot Study

We ran a series of initial pilot studies exploring participant performance
for eight PROMIS score interpretation tasks, allowing us to fine-tune
visualizations and survey wording for clarity.

In our final pilot study, we test chart performance for a single, widely
applicable task: trend interpretation. This task, in which readers identify
if a symptom or function is improving or worsening, is fundamental to
many other ecologically valid tasks (e.g., finding maxima, estimating
change over time) and is critical in assessing patient care over time.
Limiting evaluated tasks allows us to concentrate resources and increase
the statistical power of our analysis.

We recruited a sample of pilot participants from the platform Prolific1

(n=142). Prolific connects potential human-studies participants with
researchers, facilitating demographic screening, anonymization, and
compensation. Each participant was randomly placed into groups of
roughly equal size. Each group was assigned one of the five different
graph types in Figure 3.

Participants were shown eight different trends, in random order,
visualized via the graph type assigned to their group. Four graphs
were titled “Pain” and four were titled “Physical Function”. While
“Pain” is qualified with additional verbiage (e.g., “pain interference”)
in PROMIS documentation, our goal is to test participant interpretation
of a negative outcome. To reduce possible confusion, we opted for a
simpler label.

Each participant saw stimuli consisting of two charts in which Pain
was improving, two charts in which Pain was worsening, two charts
in which Physical Function was improving, and two charts in which
Physical Function was worsening. Participants were not instructed how
to interpret the graphs and were asked to determine whether the graph
showed the given variable getting better or worse.

3.2.1 Speed-accuracy tradeoff

Although it is typical to evaluate chart performance using response time
and error rate as proxies for mental effort, the two metrics can confound
each other. This “speed-accuracy tradeoff” occurs when participants
rush through questions (high error rate and quick response times) or are
exceedingly deliberate (low error rates and inflated response times) [30].
If either behavior is allowed, researchers are unable to determine which
responses are skewed, and thus both metrics are undermined. Thus,
researchers must decide to restrict one of the metrics to measure the
other as a proxy for mental effort.

1www.prolific.co

PRE-PRINT     PRE-PRINT   PRE-PRINT   PRE-PRINT   PRE-PRINT   PRE-PRINT   PRE-PRINT   PRE-PRINT  PRE-PRINT   PRE-PRINT



Paper Visualization Direction
of
encoding

Color* Smiley pic-
tograph

Longitudinal
data

THIS PAPER Line P & S ✓ ✓

Line P & S ✓ ✓ ✓

Smiley-timeline ✓ ✓ ✓

Austin et al, 2021 Line S ✓

Bar S ✓

Point S ✓

Table ✓

Color bar ✓ ✓

Turichoe et al, 2020 Line S ✓ ✓

Color bar ✓ ✓

Text ✓

Gauge icon S ✓ ✓

Stonbraker et al, 2019 Line S ✓

Smily line S ✓ ✓

Bar S ✓

Smiley bar S ✓ ✓

Point S ✓

Smiley point S ✓ ✓

Smiley icons ✓ ✓

Sparkline table S ✓

Brundage et al, 2018 Line P & S ✓

Tolbert et al, 2018 Line P & S ✓

Snyder et al, 2017 Line P & S ✓ ✓

Brundage et al, 2015 Line P & S ✓

Point P ✓

Table ✓

Heat map ✓

Izard et al, 2014 Line F ✓

Bar F ✓

Table ✓

Smiley timeline ✓ ✓

Brundage et al, 2005 Line F ✓

Text F ✓

Table 1: An overview of ten papers (including this paper) that investigate PRO score visualizations. Some of these papers also investigate
visualizations that depict proportion of patients with PRO score changes. These visualization techniques are not included in the table. In the Direction
of encoding column, P = Positional directionality (up is good for symptoms and functions), S = Semantic directionality (down is good for symptoms,
up is good for functions), and F = only explored function score encoding, so semantic & positional directionality agree. *Color refers to only coloring
associated with PRO score severity or amount. Coloring used to indicate different patients or symptoms is not included.
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Fig. 3: Top left: Line chart with color [c] encoding and y-axes in the same [s] direction (line-s-c); top right: Line chart in black white [bw] and y-axes in
the same direction (line-s-bw); middle left: Line chart with color encoding and y-axes in different [d] directions (line-d-c); middle right: Line chart in
black white and y-axes in different directions (line-d-bw); bottom: Smiley-timeline with color encoding (smiley).

If two groups of participants are given sufficient time to read a graph,
no significant difference in accuracy will be detected [30]. While accu-
rately interpreting PROMIS scores is important in real-world scenarios,
evaluating mental effort based on response accuracy may require re-
stricting participants to see graphs for an unrealistically short amount
of time.

Thus, to provide participants with a realistic amount of time 2, in
our final pilot study we restrict error rate and evaluate response time as
a proxy for mental effort,

We do so by including a section where participants are presented with
an untimed pre-survey question that shows both a PROMIS symptom
and a PROMIS function score obviously improving. We ask partic-
ipants to answer whether each graph shows its score getting better,
or getting worse, and also allow participants to report if they are un-
sure3. If a participant cannot correctly interpret the obvious trends in
an untimed setting, the survey ends. This pre-evaluation also allows us
to prime participants on future charts without explicit instruction that
might bias interpretation. All 142 participants who completed the full
pilot survey made no more than two errors answering eight questions.

We also inform participants of a 10-second maximum per question,
shown on countdown timers, to deter participants from answering

2Earlier pilot studies’ response time per question min 1.4s, median 3.7s,
max 7.6s.

3Screening questions are in Figure SM1 in Supplementary Materials

questions with an abundance of caution, which may cause artificially
long response times [30].

The fastest pilot response times result from color-encoded line charts
with y-axes encoding “up” as improvement for symptoms and func-
tion (line-same-c). Smiley-timeline visualizations result in the second
fastest response times, while slowest times result from uncolored line
charts with y-axes encoding improvement for symptoms and function
in different directions (line-diff-bw)4.

3.3 Main study

Our main study compares response times, while also exploring user
preference for the five different approaches to visualizing PROMIS
scores. We test the same visualization stimuli as the final pilot study
in a similar between-subjects experiment. Results from our pilot study
inform an a priori sensitivity analysis and pre-registered hypotheses for
our final study5. We hypothesize (H1) line charts with color encoding
will have faster response times than their counterparts without color
and (H2) smiley-timelines, which have color encoding, will have faster
response times than line charts without color. We also hypothesize
that charts that encode symptom and function improvement in the “up”
direction would be interpreted more quickly, because they do not require

4Pilot study data and analysis available at https://osf.io/e2ghq
5Hypotheses and final experimental design are at https://osf.io/e2ghq. Sen-

sitivity analysis is in Table SM2 in Supplemental Materials.
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Label line-diff-c line-same-c line-diff-bw line-same-bw smiley

Symbolic
Encoding
Directionality Functions improve

as line goes up.
Symptoms improve
as line goes down.

Functions and
Symptoms improve
as lines go up

Functions improve
as line goes up.
Symptoms improve
as line goes down.

Functions and
Symptoms improve
as lines go up.

Functions and
Symptoms improve
as pictographs get
greener and smile
more.

Color Traffic light color
scheme

Traffic light color
scheme

Black & white Black & white Traffic light color
scheme

Table 2: Labeling convention for the four different line chart conditions is: line-[direction of improvement for Symptom and Function scores]-[color
scheme].

participants to note changes in direction of improvement, resulting
in (H3 & H4) line-same-c and line-same-bw would result in faster
response times than line-diff-c and line-diff-bw, respectively. Lastly,
we hypothesize (H5) smiley-timelines will not result in significantly
slower participant response times than any line chart.

Due to low p-values from Shapiro-Wilk tests and our visual anal-
ysis of residual density and quantile-quantile plots of the pilot study
data6, we perform a non-parametric sensitivity analysis via the soft-
ware G*Power to determine an adequate sample size for our final
study. The resulting effect size was d <0.25 for 4 pair-wise conditions,
0.40<d<0.55 for 4 pair-wise conditions, and d>.75 for 2 pair-wise con-
ditions7. To explore only pairs of conditions that have "medium" to
"large" effects [22], we focus solely on necessary sample sizes for study-
ing six of the ten pairwise conditions, all of which had pilot-estimated
effect sizes of d>0.40. Of these six pairwise conditions, the largest
necessary sample size for a desired power of 0.8 was 75 participants
per condition, making our target sample size 375 participants. IRB
approval was granted by our institution.

3.4 Participants
As in the pilot study, we recruit a sample of participants from Pro-
lific8, balanced based on reported sex. We compensate participants
$10.23/hour with the expectation that survey completion would take
less than 5 minutes. All participants are from the United States, flu-
ent in English, and over age 45 years, so as to be at higher risk of
experiencing pain symptoms and physical limitations.

3.5 Survey Design
Survey participants answer basic questions about personal demograph-
ics and history with clinical care before advancing to the untimed primer
question9. If they complete the primer question successfully, we then
inform participants of a 10-second time limit for all further questions
and ask them to respond as quickly and accurately as possible. We
place randomly place each participant into groups of roughly equal size
via Qualtrics’s “Randomizer” and “Evenly Present Elements” features.
We assign each group to one of the five different graph types in Figure 3.
As in the pilot study, we show participants the same eight different
trends, in randomized order using Qualtrics’s “Randomizer” feature
to combat learning and order effects, visualized via the graph type
assigned to their group. Participants are not instructed how to interpret
the graphs and are asked to determine whether each graph shows the
given variable improving or worsening.

6See Table SM1 in Supplementary Materials
7See Table SM2 in Supplementary Materials
8www.prolific.co
9see Section 3.2.1 for further details

All questions are accompanied by a countdown timer and phrased as
“How has this patient’s pain [or physical function] been doing?” with
the possible responses, “Getting better” and “Getting worse”. Response
times are recorded from timer start to participants’ last click before
submitting their answer.

Next, participants are asked to score the chart they saw based on
how difficult it is to read, how quickly they feel they could read the
chart, how intuitive the design is, and how likely they are to recommend
using the chart. Scoring ranges from 1 (i.e., difficult, slow, unintuitive,
unlikely to recommend) to 5 (i.e., easy, quick, intuitive, likely to rec-
ommend). Finally, participants answer questions about their previous
use of PROs and online patient portals, and their preferences for using
PROs in the future.

3.6 Analytic Methods

First, we discard any response times associated with an incorrect answer.
Then, in accordance with our pre-registered analysis plan10, we conduct
Shapiro-Wilk tests on each set of response times to assess skewness
and kurtosis, rejecting all five null hypotheses that each sample came
from a normally-distributed population11. We apply pairwise Mann-
Whitney tests12 to determine significant differences between conditions’
response times, and correct for family-wise error rate using a two-
stage Benjamini-Hochberg correction13. Next, we bootstrap confidence
intervals14 for each condition’s response times using a bias-corrected
and accelerated (BCa) bootstrap interval and visualized15 the resulting
confidence intervals in Figure 4 [3, 26].

For the four subjective Likert-scaled questions on usability of vi-
sualizations, we conduct nonparametric analyses because participants
may interpret Likert scales non-linearly [39]. After running pairwise,
one-tailed Mann-Whitney tests on all visualizations, we apply the same
methods as above to correct for family-wise error rate, and bootstrap
and visualize confidence intervals16.

For both analyses, we consider p < 0.05 significant, and p < 0.1 to
be of note.
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Characteristic Number
(n=383)

%

Reported gender Female 190 49.6%
Male 193 50.4$

Age range 45-54 170 44.4%
55-64 143 37.3%
65-74 64 16.7%
75+ 6 1.6%

Ethnicity White 342 84.9%
Black 15 3.7%
Asian 13 3.2%
Mixed 10 2.5%
Other 2 0.5%
Data unavailable 1 0.3%

Reported having color-vision deficiency No 371 96.9%
Yes 8 2.1%
I’m not sure 3 0.8%
Prefer not to say 1 0.2%

History with pain: I have experienced... Knee pain 195 50.9%
Chronic pain anywhere 174 45.4%
Hip pain 109 28.5%
Hip/knee osteoarthritis 45 11.7%
None of the above 96 25.1%
Prefer not to say 1 0.3%

History with clinical care: I have experienced... Surgery 207 54.0%
Physical therapy 203 53.0%
Physical/rehabilitation medicine 63 16.4%
Occupational therapy 21 5.5%
Rheumatology 16 4.2%
Prefer not to say 1 0.3%

History with patient portals: I have... Used a patient portal 262 68.4%
Not used a patient portal 113 29.5%
Not sure 8 2.1%

History with PROs: PROs have been used in my care 42 11.0%
PROs have not been used in my care 265 69.2%
Not sure 76 19.8%

Table 3: Demographic information and participant history with clinical care and patient portals.

4 RESULTS

4.1 Participants

See Table 3 for demographic and clinical experience characteristics of
main study participants.

We recruit 403 participants; 381 (94.5%) pass the required initial
screening question17 and answer all 8 trend interpretation questions

10https://osf.io/e2ghq
11via python package scipy.stat; see Table SM3 in Supplementary Materials
12via python package pingouin
13via multipletests function in python package statsmodels; see Table SM4

in Supplementary Materials for p-values
14via bootstrap function in the python package scipy.stats
15via javascript library d3.js
16see Figure 5
17See Figure SM1 in Supplmental Materials for screening questions; see

Sec. 3.2 for justification

with 2 errors or fewer18. Our first round of recruitment resulted in
one condition with a sample size of 74, so we reopened recruitment to
ensure each chart type had at least 75 respondents, resulting in a total
sample size of 383. Our pre-screening methodology excludes 3.7%,
and an additional 1.2% are excluded for making more than two errors
answering eight questions. Overall, we exclude 5.0% of participants. Of
the remaining 383 participants, 91.4% report experiencing types of pain
or clinical care which stand to benefit from the use of PROMIS [24,25].

4.2 Overall response time

For naming conventions, see Table 2.
Line-same-c leads to significantly faster response times than all

other conditions (difference of means (DM) ≈ 0.50 seconds), except
for smiley-timelines. There is no significant difference in line-same-c
and smiley-timeline response times (DM = 0.16 seconds). See Figure 4

18As based on performance in the final pilot study and defined by our pre-
registered data exclusion criteria
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Fig. 4: A visual comparison of response times across conditions. Circles
encode average response time, thicker bars represent bootstrapped 68%
CI, and thinner bars represent bootstrapped 95% CI.

for confidence intervals 19.

4.2.1 Color Encoding

The data provide evidence to support the hypothesis (H1) that color
encoding decreases response time when interpreting trends. Line-
same-c is significantly faster than line-same-bw (p=0.020, DM=0.49
seconds), and line-diff-c is faster than line-diff-bw (p=0.098*, DM=
0.20 seconds).

The data also provide evidence to support (H2) that color-encoded
smiley-timelines result in quicker response times than black-and-white
line charts. Smiley-timelines result in significantly faster times than
line-diff-bw (p=0.013, DM=0.54 seconds), and faster times than line-
same-bw (p=0.07*, DM=0.34 seconds).

4.2.2 Line chart directionality

The data provide evidence to support (H3 & H4) that line charts that
encode improvement for symptoms and function in the “up” direction
result in quicker trend interpretation than line charts that do not. Re-
sponse times from line-same-c are significantly faster than those from
line-diff-c (p=0.020, DM=0.49 seconds). Response times from line-
same-bw are slightly faster than those from line-diff-bw (p=0.101∗,
DM=0.20 seconds).

4.2.3 Smiley-timelines

The data provide evidence to support (H5) that smiley-timelines
do not result in significantly slower trend interpretation than line
charts. Smiley-timelines are slightly slower than line-same-c (p=0.145,
DM=0.16 seconds), but faster than line-same-bw (p=0.07∗, DM=0.34
seconds), line-diff-c (p=0.07∗, DM=0.33 seconds), and line-diff-bw
(p=0.013, DM=0.54 seconds). See Figure 4 for visual comparison.

4.3 Preference rating
Smiley-timelines are rated on a 5-point scale as significantly easier
to read (average DMs = 0.33 points), more intuitive (average DMs
= 0.60 points), and more likely to be recommended (average DMs =
0.55 points) than all other visualizations. Smiley-timelines are also
perceived as significantly quicker to read than line-diff-bw (DMs =
0.37). No other significant differences were found. See Figure 5

Lastly, we explore if and how participants may be interested in
seeing their PROs in the future. Fifty-three percent are interested in
clinicians using PROs to discuss their care, while 12% are not. We find
no significant differences in interest in future use of PROs based on
chart type shown.

19Adjusted p-values are available in Table SM4 in Supplementary Materials
*The adjusted p-value for this difference is up to double the p<0.05 threshold

of significance specified in our pre-registered analysis plan: https://osf.io/e2ghq
*The adjusted p-value for this difference is up to double the p<0.05 threshold

of significance specified in our pre-registered analysis plan: https://osf.io/e2ghq

Fig. 5: A visual comparison of participant Likert responses to subjective
questions across conditions. Circles encode average response time,
thicker bars represent bootstrapped 68% CI, and thinner bars represent
bootstrapped 95% CI.

4.4 Response Accuracy
While we do not examine response accuracy, nor have a pre-registered
analysis plan to do so, percent of errors separated by chart type are
available in Figure SM2 in Supplementary Materials.

5 DISCUSSION

We can address visual-semantic conflicts in visualizations by replacing
or doubly encoding the channels that cause them. In the case study
examined in this paper, we demonstrate that the positional-semantic
conflict incurred by encoding PRO scores along the y-axis can be miti-
gated with color encoding and adhering to positional paradigms, or by
entirely replacing y-axis encoding with colors and pictographs. We note
that response times when interpreting the general trend of a patient’s
scores indicate no significant difference between these two solutions,
but qualitative responses from our participants exhibit that replacing the
conflicting y-axis encoding completely leads to less perceived difficulty
and more intuitiveness.

This study builds on previous examinations of the visual-semantic
conflict inherent in visualizing PRO scores. Much of this current
literature finds evidence for the y-axis conflict we address here, and
some continues on to examine potential solutions. Notably, Stonbraker,
et. al placed black-and-white smiley faces on line charts, among other
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Fig. 6: Originally published on TowardsDataScience.com, the above 
scatter plot encodes the average percentage concentration of sea ice 
above the Arctic circle via a white-to-navy sequential color scheme [32]. 
Which areas of the scatterplot above show a higher concentration of 
ice? While dark colors, like navy, are often associated with more of 
something, white is typically associated with the color of ice.

standard graph types, and found PRO score graphs with smiley faces 
led to increased comprehension and were favored by readers with low 
graphic literacy [46]. Our study suggests that adding color to such 
stimuli may improve performance further.

5.1 Limitations
While pre-screening participants allowed us to address speed-accuracy 
tradeoff [30], it required the exclusion of important subsets of the 
population, namely readers with low graphic literacy. Additionally, 
our collection of participant sociodemographic data lacks indicators of 
graphic literacy, including education and income level. Future work 
would greatly benefit from recording these factors, addressing biases 
that might stem from skewed socioeconomic samples, and specifically 
examining solutions to visual-semantic conflicts for populations with 
low graphic literacy.

Although precision-based tasks, such as finding maximum score, are 
commonplace evaluating visualizations, we opted to evaluate general 
trend interpretation. This approach prioritizes interpretation of direc-
tion of change (i.e. pain improving or worsening) over estimation of 
amount of change (i.e., pain changing by a score of 20). Under this 
prioritization, smiley-timelines performed comparably to, if not better 
than, line charts.

The same relationship may not hold during the evaluation of 
precision-based tasks. The hierarchy of visual performance–as mea-
sured by precision–suggests that shape, color, and pictographic encod-
ings are less precise than positional encodings [21, 36].

Further research is needed to determine how the visualizations pre-
sented in this study perform in other tasks. If a lack of precision is 
identified and conflicts with the objectives of a visualization, further 
precision can be communicated via other methods, like tool tips [1].

Additionally, we did not address familiarity bias within our experi-
ments. The prevalence of line charts in daily life and education in the 
U.S. may aid participants in answering trend interpretation questions 
more quickly with line charts than they would if they were similarly 
exposed to smiley-timelines. At the same time, there is a strong famil-
iarity associated with the smile pictography and red-yellow-green traffic 
light coloring used in the smiley-timeline [49, 53, 55, 56]. Thus, it is un-
clear whether familiarity biases likely affect response-time differences. 
Future research could further introduce participants to smiley-timelines 
before comparing visualization performance as a substitution for pro-
longed exposure.

5.2 Future work
The identification and potential remediation of visual-semantic conflicts
presents plenty of opportunity for future work. Applied case studies,
like the one we present here, provide nice contextual frameworks for
evaluating the performance of redesigns.

Further investigation of the strength of visual-semantic conflicts
when encoding data of different sizes and shapes is also warranted.
The confusion behind visual-semantic conflicts in two line charts may
change with a larger number of presented visualizations. Additionally
the usability of redesigns to address conflicts may vary give the amount
of data points visualized or the task at hand.

Despite the focus of this case study, visual-semantic conflicts are
not restricted to y-axis encoding. Non-positional encodings, like color,
shape, and borders are also susceptible to conflicting with semantics [33,
40,41,60–62]. Color, in particular, has been shown to result in semantic
conflicts via the famous Stroop task [47], in which participants are asked
to name the color of a word that spells out a different color (e.g., the
word "BLUE" colored yellow), and visualization research maintains
that it is best practice to choose semantically-appropriate colors when
possible [40, 41]. At the same time, viewers tends to associate darker
colors with more of something (i.e., a dark-is-more bias). Thus when
visualizing a quantity of something that is associated strongly with light
colors, a visual-semantic conflict may occur. For example, Figure 6
shows a color-encoded scatterplot of the percent concentration of ice in
the arctic circle [32]. While, ice can be associated with a white/lighter
color due to lived experience (e.g., an iceberg is white in a sea of blue),
the dark-is-more bias conflicts with this semantic reasoning. In this
case an alternate color scheme, or even a new encoding channel could
increase comprehensibility.

6 CONCLUSION

Encoding severity via color in line charts can increase general trend
interpretation of non-ideal variables. When visualizing PRO scores with
the goal of improving interpretability, color-encoded smiley-timelines
may be a useful alternative to line charts. Future research should
explore novel approaches to reduce semantic confusion, within in and
the beyond positional encoding of line charts.

SUPPLEMENTAL MATERIALS

All supplemental materials are available on OSF at https://osf.io/
kxzm3/, released under a CC BY 4.0 license. In particular, they include
(1) files containing the data and analyses for creating Tab. 3, Fig. 4 and
Fig. 5, (2) files containing the data, analyses, and results for our pilot
study, (3) examples of the stimuli used in the pilot and main studies,
(4) screening questions and their answer keys, (5) a visual report of
accuracy metrics from our main study.
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